Local-Likelihood Transformation Kernel Density Estimation for Positive Random Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood kernel density estimation

Methods for improving the basic kernel density estimator include variable locations, variable bandwidths (often called variable kernels) and variable weights. Currently these methods are implemented separately and via pilot estimation of variation functions derived from asymptotic considerations. In this paper, we propose a simple maximum likelihood procedure which allows (in its greatest gener...

متن کامل

Iterated Transformation-Kernel Density Estimation

Transformation from a parametric family can improve the performance of kernel density estimation. In this paper, we give two data-driven estimators for the optimal transformation parameter. We demonstrate that multiple families of transformations can be employed at the same time, and there can be beneets to iterating this process. The transformation scheme can be expected to rst pick the right ...

متن کامل

Kernel density estimation for stationary random fields

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Local likelihood estimation for nonstationary random fields

We develop a weighted local likelihood estimate for the parameters that govern the local spatial dependency of a locally stationary random field. The advantage of this local likelihood estimate is that it smoothly downweights the influence of faraway observations, works for irregular sampling locations, and when designed appropriately, can trade bias and variance for reducing estimation error. ...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2018

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2018.1424636